

THE FUTURE OF THE POWER SYSTEMS AND THE ELECTROMECHANICAL INDUSTRY'S ROLE

GÜÇ SİSTEMLERİNİN GELECEĞİ VE ELEKTROMEKANİK ENDÜSTRİSİNİN ROLÜ

TREND IN THE RECENT IMPROVEMENT OF TRANSFORMER-REACTOR COMPONENTS

TRAFO-REAKTÖR KOMPONENTLERINDE SON GELIŞMELER

SLOVAKIA

Selim Yürekten, Enpay Transformer Con CIGRE-16 NOVEMBER 2015, İTÜ İSTANE

TURKEY

INDIA

Global competition of the HV Power Transformer producers is getting more difficult.

One of the most important challenges to reduce the cost of transformer is the optimization of magnetic core and insulation components design.

Successful performance can be achieved by well established cost effective design criteria and by high quality manufacturing of the components.

The present study gives general information about specification of main components for different type of power transformers and reactors.

INSULATION COMPONENTS
 MAGNETIC COMPONENTS
 CT. FOR BUSHINGS
 QUALITY

HV POWER TRANSFORMER

1. INSULATION COMPONENTS

1A. TRANSFORMERBOARD, IEC 60641 1B. LAMINATEDBOARD, IEC 60763 1C. COMPONENTS FROM BOARD MATERIAL 1D. COMPONENTS FROM WET MATERIAL

1A. TRANSFORMERBOARD, IEC 60641

The Life of transformer depends on the life of insulation.

Insulation in liquid immersed HV power transformers is cellulose based material.

-Manufactured from unbleached sulphate cellulose PULP in HOT PRES

Sheet size from board machine 6300x3200 x1-8 mm. Worldwide reachable biggest size.

Transfo

ENPAYBOARD® Production Hall

Hot Press

Board Machine

I.Stock Preparation

II.Board Machine

Transfo

III.Hot Press

ENPAYBOARD® ONLINE CONTROL STEPS

1. Metal Dedector (Wet Material)

3. Thickness

4. Metal Dedector

2. Moisture Content

5.Surface Inspection

1B. LAMINATED PRESSBOARD, IEC 60763

-With casein glue (TYPE LB 3.1A.1)

Sheet sizes 4000x2000x9-40 mm 3000x3000x9-40 mm

-With polyester resin glue (TYPE LB 3.1A.2) Sheet sizes 4000x2000x9-150 mm

3000x3000x9-150 mm

Laminated Pressboard Polyester – IEC 60763-3-1 TYPE LB 3.1A.2

Requirement Value : 70 kV (10 mm - 7kV/mm)

Schematical barrier system at the upper end of the transformer windings.

Transfor

C. COMPONENTS FROM BOARD MATERIAL

Shield Rings (SCHIRMRING)

•Shielded Rings made of Laminated Wood or Transformerboard •According to IEC 60641-3-1 Type B.3.1-IEC 61061-3-1 Type C2R

Shield End Rings

The Rings are made of; •Laminated Wood according to IEC 61061 or •Laminated Pressboard according to IEC 60763

1C. COMPONENTS FROM BOARD MATERIAL

Press (Clamping) Rings

The Rings are made of Laminated Pressboard according to IEC 60763

Shield (Metallized) Cylinder - Axial

The Cylinders are made of Transformerboard according to IEC 60641

KITS for Power Transformers

- Cylinders made of Transformerboard
- According to IEC 60641-3-1 TYPE B.3.1
- Less production costs
- Decreased manufacturing cycle time
- According to customer request

1D. COMPONENTS FROM WET MATERIAL

Snouts-Chimney Sectors-Flange Tubes

- Molded components made of Transformerboard according to IEC 60641
- Tailor-made according to the customer specification

D. COMPONENTS FROM WET MATERIAL

Caps or Angle Rings – Electrode Configuration for Breakdown Voltage According to IEC 60243

Electrode configuration according to IEC 60243

D. COMPONENTS FROM WET MATERIAL

Electrical Strength — Request Value

D. COMPONENTS FROM WET MATERIAL

Electrodes (Shields) for Bushings and Lead Exits

D.COMPONENTS FROM WET MATERIAL

1200 kV Lead Exit

Middle exit system design

Middle exit system field distribution curve-stress curve

2. MAGNETIC COMPONENTS

2A. CORES FOR POWER TRANSFORMERS2B. CORES FOR REACTORS2C. TANK-JOKE SHILDINGS FOR TRANS. and REAC.

2A. CORES FOR POWER TRANSFORMERS

2A. CORES FOR POWER TRANSFORMERS Core loss = P(hys)+P(eddy + anomalous los.)

The detail of the hysteresis loss is given in hystresis loop. $P_{h} = K_{2} f \ B_{\textit{mp}}^{n}$

Eddy current loss is given by

 $P_e = K_1 f^2 t^2 B_{rms}^2$

Challenges for transformer industry -design optimization -low induction level -core weight

For less core losses and magnetostrictions (noise) :

-state-of-the-art design and manufacturing

-optimized magnetic domain structure

-optimized insulation coating characteristics

-cost effective steel selection

P

2B. CORES FOR REACTORS / SHUNT REACTORS

Shunt reactors contain same components as power transformers. Difference is that reactor core limbs have non magnetic gaps (so called 'gapped-core')

Challenges for shunt reactor technology

- -high stray loss create local overheating
- vibration create local overheating damage the insulation, and leakages of the tank
- -high sound level required to apply expensive sound screen materials
- -can be studied with (FEM) simulation programs

The stacked laminations prevent fringing flux, avoiding overheating on the core packed Fringing fluxes increase sound level Losses of gapped core reactor are: Winding losses + core losses in limbs and yokes+ additional(structural) losses by leakage flux

Core losses composed of 67% eddy current losses + 33% hysteresis losses

Ε

Shunt reactor cores from production line

In new advanced designs BEVEL EDGE core packets are used to reduce the EDDY CURRENT LOSSES and SOUND LEVEL

In big powers loss differences are remarkable, particularly in single phase

BY BEVELING CORE LIMB PACKETS THE EDDY CURRENT LOSSES ARE REDUCED

Core Package without Bevel Edge

Core Package with Bevel Edge

Two simulation pictures shows the differences between core packets without and with Bevel Edge

BY USING ADDITIONAL RING YOKE (SHUNTS) THE ADDITIONAL LOSSES ARE REDUCED

Core Package without Bevel Edge

Core Package with Bevel Edge and with Additional ring yoke

Additional Ring yokes (shunts), special flux plates also act as winding press plates. But also provide at top and bottom of winding to collect the leakage flux, thereby minimizing stray losses in tank and eddy current loss, Consequent hot spot at the end discs of winding.

Rectangular additional yokes can not have the same result of additional ring yokes.

2C. TANK- JOKE SHILDINGS FOR TRANSFORMERS & REACTORS

The stray losses due to leakage field cause hot spots in structural components.

Challenges for state-of-the-art shielding: -Length from top yoke to bottom yoke -Thickness of shunt depends on Flux -cover at least 70% of windings area -Distance between 2 shunt elements should be minimum

-Type of shunts edgewise, perpendicular to tank wall, not parallel

TANK SHUNTS

YOKE SHUNTS

3. CT.FOR BUSHINGS 3A. CT.FOR OIL TYPE TRANSF.BUSHINGS

3A. FOR CT.s

EXCITATION CURRENT OF CT's IN 3-PHASE SYSTEMS

The excitation current is important to define CE (composite error) value for P and C protection classes in IEC 60044-1 & IEEE C 57.13 standards. CE value is a critical parameter for these type protection classes. We also provide that the differences of calculated CE value between each other less than 10% if it's defined at an inquiry.

3B. CT. FOR GIS (SF6) TYPE3

4. QUALTY CONTROL FOR:

4A. INSULATION
4B. MAGNETICS
4C. CT.s
4D. INTERNATIONAL ACCREDITATION

4A. INSULATION

Insulation Laboratory Test Facilities:

- 1. Electrical Tests
- 2. Mechanical Tests
- 3. Chemical Tests
- 4. Cellulose & Paper Tests
- 5. Transformer Oil Tests

Conditions:

Temperature : 23±2°C Relative Humidity : 50 ±5 %

Chemical Tests

Degree of Polymerization

Conductivity & pH

Oil Absorption

Presence of metallic particles with chemical methods

Ash Content

Water Determinations by Karl Fischer Titration

Moisture Content

Transformer Oil Tests

Determination of Water by Automatic Coulometric Karl Fischer titration

Breakdown Voltage

Dissipation Factor (Tangent Delta) at 90°C

Acidity (Neutralization value)

Sludge Content

Permitivity at 90°C

Resistivity at 90°C

Interfacial Tension

High Voltage Laboratory

Electrical Tests (Solid Material)

According to IEC 60243 Electrical Strength in Oil Electrical Strength in Air Parallel to Lamination Perpendicular to Lamination

According to IEC 60270 Partial Discharge Test Inception Voltage >2 pC Extinction Voltage >2 pC

According to **IEC 60250** Dissipation Factor (DDF) / Tan δ Permittivity

4B. MAGNETICS

Specific total loss (single sheet test)

TÜRKAK TÜRKAK TÖRKAK TÖRKAK

Specific total loss(Epstein test)

4B. MAGNETICS

Surface Insulation Resistance (Franklin Test) are controlled according to IEC60404-11 Mode A

	Surface Insula By Fr	ition Res anklin Te	istance 1 est Meth	Test Rep od	ort		Report No.	1200	6.2012
0	btain Values of Colls			9	urface Insid	ation Resist	lance (ohm.c	ະຫ ²]	
No.	Sample Number	Surface Number	1.Box.	Z. Mean	1. House	4 Mean.	S. Merre.	Arg.	Mrp.
-	Steel M0H8.30 Damfer X00000	7.9	14,38	10,79	20,65	9,54	11,02	12,47	
1	Publities 12/3477	800.01	6.11	12.10	.6.44	5.99	6.29	7,56	
-	Sheet M046.30	Tel	13,33	18.06	32246,78	10,46	12,20	17;16	
2	PalletNx 12:0477	Cotton	34,85	25,00	204.64	115.54	41.94	45.81	26,06
-	Sheat MOHE 30	7.0	15,74	16,21	12,80	10,91	9,70	12,36	
3	Polatika 12/3469	Bothiei	4.73	16.91	7.67	12.54	8.83	6.02	9.88
-	Sheet MONE.30	Tig	3221.76	3221.78	641.78	35.87	41.54	96.99	
4	Probability 12/04/00	Bottom	399,90	53.30	31,34	36,23	40.01	45,21	62,08
	Sheet MOHE 30	TH	24.53	12.78	7,80	15.67	16.89	13.95	1000
5	Pullet No. 123464	Bottom	10.36	7,42	1,60	7,26	6.44	7,46	
-	Sheet M0H8,30	Tu	103.56	3221 78	641,78	355.11	126,78	226,48	
6	PolletNo: 12:5464	Beffort	93,62	44.98	99.81	16,25	19.55	33,53	60,15
-	C 08 H0. ND534 104B		Neomie	giốu	Nazon	ed Coll		Product Type	_
	Revision (Explanations):	-	Ð		8			LAMINABYON	-
5 m	eta ne insciatoro Restatoren Test By F al Espisarent Boccincias Necestertali	-Pranklin German	ning to 600 1934) 1946 (561-04-26)	4411 Elettod-4 5 01 00680 - Presid	ed Abtom Grad D In Tester Silv B	54) 4 (5 / - 100 - 1 N (4 (5 / 02 (10/1	Novel 1	Laibentica Date: (tard Salit patris D	N 82.24 10 Mar # 10.02.2
	Cont	O.K	52			A010	ind by		

4B. MAGNETICS Adhesion test

Adhesion Test are controlled according to IEC60404-12

Online Continious Measuring Surface Condition and Thickness Measuring

Surface Condition are controlled according to IEC60404-8-7 / 6.4

4B. MAGNETICS

Burr height measuring

The measured burr height shall not exceed 0,025 mm according to IEC60404-8-7 and EN10107.

But, the burr height value is applied max. 0.010 mm by ENPAY.

4C. CT.s

4D. INTERNATIONAL ACCREDITATION

6	0	7
TÚ	RK	A.0.5
	Ø	J

TÜRK AKREDİTASYON KURUMU

COPY OF THE ACCREDITATION CERTIFICATE

As a Testing Laboratory,

ENPAY ENDÜSTRİYEL PAZARLAMA VE YATIRIM A.Ş. Enpay Endüstriyel Pazarlama Ve Yatırım A.ş. karadenizliler mah, fakülte cad. no:147/A kullar başiskele 41140 KOCAELİ / TÜRKIYE

is accredited in accordance with TS EN ISO/IEC 17025:2010 within the scope given in Annex following the assessment conducted by TÜRKAK.

Accreditation Number : AB-0546-T

Accreditation Date

: 19 May 2012

This certificate shall remain in force until 18 May 2016, subject to continuing compliance with the standard TS EN ISO/IEC 17025:2010, related regulations and requirements.

Deputy Secretary General

and the state of the second section of the second

Annex of the Certificate (Page 1/5)

Accreditation Scope

C	ENPAY ENDÜSTRİYEL PAZARLAMA VE YATIRIM A.Ş.				
TÜRKAM	Enpay Endüstriyel Pazarlama Ve Yatırım A.ş.				
	Revision Number: Address:karadeniziler mah. takülte cad no:147/A kullar başıskole 41540 KOCAELI / TÜRKIYE	00 Date: 19 May 2012 Phone: 102823405520 Pax: 30623406830 E-Mail: unfo@enpsy.com Wabsite: www.enpsy.com			

Tested Materials / Products	Name of Test	Testing Method (National, International standards, in house methods)
Presistoard and Presispaper for Electrical Purposes	Thickness	16C 60641 + 2 (Clause 5)
	Apparent Density	IEC 80641 - 2 (Clause 6)
	Tamile Strangth	IEC 60641 + 2 (Ctause 7)
	Elongation	IEC 6564T - 2 (Ctause 7)
	Compressibility	IEC 60641 - 2 (Clause 10)
	Shrinkage	IEC 90641 - 2 (Clause 11)
	Plybond Resistance	IEC 00641+2 (Cause 12)
	Moisture Content	IEC 60641 - 2 (Clause 13)
	Ash Content	IEC 60641 - 2 (Clause 14)
	Cantuctivity of squeous extract	IEC 60041+2 (Clause 15)
	pH of aqueous extract	IEC 60641 + 2 (Clause 16)
	Oil Allsorption	IEC 60641 - 2 (Clause 17)
	Electric Strength	IEC 60841 - 2 (Clause 20)
Laminated Pressboard	Thiskness	IEC 60763 - 2 (Clause 5-1)
	Flaxural Strength	IEC 60763 - 2 (Clause 6 1)
	Modulus of Elasticity in Plexure	IEC 80783 - 2 (Clause 8/25
	Compressibility	IEC 00703 - 2 (Cinum 7) =

Annex of the Certificate (Page 2/5)

Accreditation Scope

ENPAY ENDÜSTRİYEL PAZARLAMA VE YATIRIM A.Ş. Enpay Endüstriyel Pazarlama Ve Yatırım A.ş.

> Accreditation Number: AB-0546-T Revision Number: 00 Date: 19 May 3012

Tested Materials / Products	Name of Test	Testing Nethod (National, International standards, in house methods)
Laminated Presistioand	Electric Striength	(EC 60793 - 2 (Clause 8)
	Internal Ply Strangth	IEC 60763 - 2 (Clause 9)
	Applanent Density	IEC 60763 - 2 (Clause 10)
	Moisture Content	IEC 80763 - 2 (Clause 11)
	Shrinkage	IEC 60763 - 2 (Clause 12)
	Oil Absorption	(EC 60763 - 2 (Clause 13)
	Ash Content	(EC 60763+2 (Clause 14)
	Contamination of Liquid Dielectrics	IEC 60763 - 2 (Clause 15)
	Conductivity of Aqueous Extract	(EC 60763 - 2 (Clause 16)
	pH of Aqueous Extract	IEC 80763 - 2 (Clause 17)
Celuroso Electrically Insulating Autoriala	Measurement of Average Viscomatric Degree of Polymerization	IEC 60400
	The Determination of The Permittivity and Detectric Dissipation Factor	NEC 60250
	Partial Discharge Measurements	IEG 00270
	Electrical Strength (Tests at power frequencies)	IEC 00243-1
Paper and board	Paper and board Determination of tensile properties	150 1824-2
	Determination of moisture content of a lot - Oven-drying method	190 287
Paper, board and pulps	Determination of residue (ash) on ignition at 800 degrees C	ISD 2144
neutating Liquide	Determination of Water by Automatic Coulometric Karl Factor Tittation	IEC BOR14

Annes of the Certificate (Page 3/5)

E

Transfo

Accreditation Scope

Tested Waterials / Products	Name of Tast	Testing Method (National, International standards, in house methods)
Onsulating Liquids continuedy	Determination of The Breakdown Voltage	IEC 80158
	Measurement of Relative Permittivity. Dielectric Data pation Factor (ten 6) and D.C. Residuate	IEC 80247
	Determination of Acidity	IEC 82021-1
	Sludge Formation	IEC 01125 (Clause - 1.9.1)
	Interfacial Tension of Oil Against Water by the Ring Method	ASTM D971-99a
Current Transformer	Venilication of terminal markings	(EC 60044-1
	Power frequency withstand levil on secondary winding and between sections	IEC 0004-1
	Intel-turn overvoltage test	IEC 60044-1
	Determination of enturs	IEC 60044-1
	Routine test for accuracy of measuring current transformers	VEC 60044-1
	Instrument security factor	EC 60044-1
	Type and rouble tests for current error and phase displacement of protective current transformers	IEC 60044-1
	Routine test for composite error	EC 90044-1
	Determination of remenance factor (Kr)	IEC 60044-1
	Determination of secondary loop time constant (Ts)	IEC 80044-1
	Determination of seconitary winding resistance (Rot)	IEC 80044-1
	Routine tests for class PX protective current transformers	IEC 80044-1

Annex of the Certificate (Page 4/5)

Accreditation Scope

ENPAY ENDÜSTRİYEL PAZARLAMA VE YATIRIM A.Ş. Enpay Endüstriyel Pazarlama Ve Yatınım A.ş.

> Accreditation Number: AB-0546-T Revision Number: 00 Date: 19 May 2012

Tested Materials / Products	Name of Test	Testing Method (National, International standards, in house methods)		
(Current Transformer continued)	Rated knee point E.M.F. (Ex) and maximum exciting current (ie)	IEC 80044-1		
	Secondary winding resistance (Rot)	IEC 60064-1		
	Turna ratio error	1EC 60044-1		
	Insulation texts	IEC 60044-1		
	Inter-tum insulation testa	IEC 80044-1		
	Turna ratio error	1EC 60044-6		
	Steady state ratic error and phase deplacement	1EC 60044-6		
	Determination of secondary winding resistance (Rot)	IEC 00044-8		
	Determination of secondary excitation characteristic.	1EC 80044-8		
	Determination of remenance factor	IEC 50044-5		
	Calculation of secondary loop time constant (Te)	IEC-60044-6		
	Applied voltage dielectric test between windings and between windings and ground	IEEE ANSI C57 13		
	Induced voltage test	EEE ANSI C57:13		
	Accuracy test	EEE ANSI C57.13		
	Polarity test	EEE ANBI CSI7.13		
	Excitation test	EEE ANS: C57 13		
	Ratio correction ourve	EEE ANBI CSI7 13		
	DC resistance	EEE ANSI C57 13		

Annex of the Certificate (Page 5/5)

Accreditation Scope

ENPAY ENDÜSTRİYEL PAZARLAMA VE YATIRIM A.S. Enpay Endüstriyel Pazarlama Ve Yatırım A.ş.

> Accreditation Number: AB-0546-T Revision Number: 05 Date: 19 May 2012

Tested Materials / Products	Name of Yest	Testing Method (National, Isternational standards, in house methods) IEC 80404-2	
Magnetic Materials	Measurement of the Magnetic Properties of Electrical Steel Sheet and Strip by Means of an EPSTEIN Prame		

End of Scope

H.Irfan AKSOY Deputy Secretary General

Transfor

Thank You For Your Attention

